Compartmentalisation-based design automation method for power grid

نویسندگان

  • Korosh Vatanparvar
  • Sani Fakhouri
  • Mst-Ayesha Siddika
  • Mohammad Abdullah Al Faruque
چکیده

Power grid design and maintenance are conducted to solve the problems caused by load growth over time and to stay within the constraints of voltage drop, power factor, etc. Typically, solutions to these problems are optimised individually. Considering multiple problems simultaneously and applying different solutions require vast design space exploration. This exclusively needs advanced algorithms and complex global optimisation methods which are not easily-applicable in different scenarios. In the state-of-the-art methods, for solving multiple problems simultaneously, these individually optimised solutions are applied sequentially to the power grid. In this so-called uncoordinated method, the final solution may not be optimal solution considering all the variables, since it is considering the overlapping effect of the solutions on the power grid. To validate the compartmentalisation method, a detailed distribution grid has been modeled. After analysing the possible solutions and optimisation, power loss was reduced 45% and total cost decreased by 71%, compared to the uncoordinated method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of A Single-Phase Transformerless Grid-Connected PV Inverter ‎Considering Reduced Leakage Current and LVRT Grid Codes

A new single-phase transformerless grid-connected PV inverter is presented in this paper. Investigations in transformerless grid-connected PV inverters indicate the existence of the leakage current is directly related to the variable common-mode voltage (CMV), which is presented in detail. On the other hand, in recent years it has become mandatory for the transformerless grid-connected PV inver...

متن کامل

A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy

Brushless doubly fed reluctance generator (BDFRG) has been recently suggested as a wind generator. Different control methods are presented in literature for the BDFRG, but there is a gap on control under unbalanced grid voltage condition (UGVC). This paper presents a predictive direct power control (PDPC) method for the BDFRG under UGVC. The proposed PDPC method is based on power compensation s...

متن کامل

Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults

This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...

متن کامل

An LCL-filtered Single-phase Multilevel Inverter for Grid Integration of PV Systems

Integration of the PV into the electrical grid needs power electronic interface. This power electronic interface should have some key features and should come up with grid codes. One of the important criteria is the quality and harmonic contents of the current being injected to the grid. High-order harmonics of the grid current should be very limited (lower than 0.3% of the fundamental current)...

متن کامل

Low Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage

In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Cyper-Phys. Syst.: Theory & Appl.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017